A Unified Approach for Conventional Zero-Shot, Generalized Zero-Shot, and Few-Shot Learning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unified approach for Conventional Zero-shot, Generalized Zero-shot and Few-shot Learning

Prevalent techniques in zero-shot learning do not generalize well to other related problem scenarios. Here, we present a unified approach for conventional zero-shot, generalized zero-shot and few-shot learning problems. Our approach is based on a novel Class Adapting Principal Directions (CAPD) concept that allows multiple embeddings of image features into a semantic space. Given an image, our ...

متن کامل

Ordinal Zero-Shot Learning

Zero-shot learning predicts new class even if no training data is available for that class. The solution to conventional zero-shot learning usually depends on side information such as attribute or text corpora. But these side information is not easy to obtain or use. Fortunately in many classification tasks, the class labels are ordered, and therefore closely related to each other. This paper d...

متن کامل

Zero-Shot Kernel Learning

In this paper, we address an open problem of zero-shot learning. Its principle is based on learning a mapping that associates feature vectors extracted from i.e. images and attribute vectors that describe objects and/or scenes of interest. In turns, this allows classifying unseen object classes and/or scenes by matching feature vectors via mapping to a newly defined attribute vector describing ...

متن کامل

Generalized Zero-Shot Learning via Synthesized Examples

We present a generative framework for generalized zeroshot learning where the training and test classes are not necessarily disjoint. Built upon a variational autoencoder based architecture, consisting of a probabilistic encoder and a probabilistic conditional decoder, our model can generate novel exemplars from seen/unseen classes, given their respective class attributes. These exemplars can s...

متن کامل

A Generative Approach to Zero-Shot and Few-Shot Action Recognition

We present a generative framework for zero-shot action recognition where some of the possible action classes do not occur in the training data. Our approach is based on modeling each action class using a probability distribution whose parameters are functions of the attribute vector representing that action class. In particular, we assume that the distribution parameters for any action class in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Image Processing

سال: 2018

ISSN: 1057-7149,1941-0042

DOI: 10.1109/tip.2018.2861573